Derived decompositions of abelian categories I

نویسندگان

چکیده

Derived decompositions of abelian categories are introduced in internal terms subcategories to construct semi-orthogonal (or Bousfield localizations, or hereditary torsion pairs) various derived categories. We give a sufficient condition for arbitrary have such and show that it is also necessary with enough projectives injectives. For bounded categories, we describe which determined by decompositions. The then applied the module rings: localizing subcategories, homological ring epimorphisms, commutative noetherian rings nonsingular rings. Moreover, Krull dimension at most $1$, stratification its category established.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Introduction to Abelian and Derived Categories

This is an account of three 1-hour lectures given at the Instructional Conference on Representation Theory of Algebraic Groups and Related Finite Groups, Isaac Newton Institute, Cambridge, 6–11 January 1997. In section 1, we define abelian categories following Grothendieck [12]. We then characterize module categories among abelian categories. Finally we sketch a proof of Mitchell’s full embeddi...

متن کامل

Derived Categories Part I

3 Derived Categories 11 3.1 Extending Functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2 Truncations and Hearts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.3 Bounded Derived Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.4 Plump Subcategories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....

متن کامل

Gorenstein projective objects in Abelian categories

Let $mathcal {A}$ be an abelian category with enough projective objects and $mathcal {X}$ be a full subcategory of $mathcal {A}$. We define Gorenstein projective objects with respect to $mathcal {X}$ and $mathcal{Y}_{mathcal{X}}$, respectively, where $mathcal{Y}_{mathcal{X}}$=${ Yin Ch(mathcal {A})| Y$ is acyclic and $Z_{n}Yinmathcal{X}}$. We point out that under certain hypotheses, these two G...

متن کامل

Abelian Categories

Abelian categories are the most general category in which one can develop homological algebra. The idea and the name “abelian category” were first introduced by MacLane [Mac50], but the modern axiomitisation and first substantial applications were given by Grothendieck in his famous Tohoku paper [Gro57]. This paper was motivated by the needs of algebraic geometry, where the category of sheaves ...

متن کامل

Obstruction Theory for Objects in Abelian and Derived Categories

In this paper we develop the obstruction theory for lifting complexes, up to quasi-isomorphism, to derived categories of flat nilpotent deformations of abelian categories. As a particular case we also obtain the corresponding obstruction theory for lifting of objects in terms of Yoneda Extgroups. In appendix we prove the existence of miniversal derived deformations of complexes.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pacific Journal of Mathematics

سال: 2021

ISSN: ['1945-5844', '0030-8730']

DOI: https://doi.org/10.2140/pjm.2021.312.41